

INDIVIDUAL ASSIGNMENT

FOR

OPERATING SYSTEMS (CX004-3-3-OPS)

By

Adrien Poupa

TP040869

INTAKE: UCFEFREI1603-PDK

DUE DATE: 1 June 2016

NAME OF LECTURER: MR DHASON PADMAKUMAR

Debian logo1

Operating system chosen: Debian 8

1 Source : Wikimedia

https://upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Debian-OpenLogo.svg/775px-

Debian-OpenLogo.svg.png

https://upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Debian-OpenLogo.svg/775px-Debian-OpenLogo.svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Debian-OpenLogo.svg/775px-Debian-OpenLogo.svg.png

Adrien Poupa TP040869 Operating Systems Individual Assignment

3

Table of contents

1. Introduction to Debian 4

2. Installation and configuration

a. Installation of the Operating System chosen 5

b. System Configuration Details 24

c. Process Control Management – CPU scheduling algorithms

i. First-come, first-served 25

ii. Priority 26

iii. Round robin 27

iv. Shortest job first 28

v. Completely Fair Scheduler 29

3. Memory Management – Memory allocation algorithms

a. Introduction to the Memory management 30

b. Internal, External Fragmentation and Compaction techniques 32

c. Page replacement algorithms 34

d. Memory allocation strategies 35

4. Secondary-Storage Management – Disk Scheduling algorithms

a. First-come, first-served 37

b. Shortest Seek Time First 38

c. C-Scan 39

d. Scan 40

e. C-Look 41

f. Linux Disk Scheduling algorithms 42

5. Deadlock and help

a. Deadlock Management

i. Deadlock cycle 43

ii. Circular wait 43

iii. Hold and wait 44

iv. No preemption 44

v. Mutual exclusion 45

vi. Deadlocks in Linux 45

b. Help and Support 46

6. Conclusion 47

7. References 48

Adrien Poupa TP040869 Operating Systems Individual Assignment

4

1. Introduction to Debian

The researcher has chosen to talk about Debian. It is not the OS the researches uses as a daily-

driver, however it is used on the webserver he uses to host websites. Debian has been created by

Ian Murdock in 1993, its name is coming from a contraction of “Ian” and Ian’s girlfriend “Debra”.

Debian is free and open-source, based on a Linux kernel; this distribution is one of the oldest

and one of the most popular for personal computers and network servers requiring reliability.

Indeed, three development branches are used: unstable for newest programs, testing for programs

that have passed the unstable branch, then stable used for production, which is very reliable. It is

so stable that other distributions such as Ubuntu are based on both Debian unstable and testing

branches.

It has the largest software compilation with over 50,000 software packages. Debian does not

require much resources: it is possible to install it with 60 MB of RAM.

To sum up, its advantages are the followings: it is free, open-source and extremely reliable.

That is why it is widely used it as a webserver, and why it is so popular among other server

distribution (first and 32% of Linux market share for web servers according to W3Techs).

However, it has several drawbacks such as very slow stable release cycle (stable software are

frequently deprecated when they hit the stable branch). Plus, it has a very strict policy concerning

proprietary software, leading to problems with codecs for example. Moreover, it had issues with

the open source community as well, since the Mozilla foundation did not want Debian to alter its

software keeping Mozilla’s names.

Adrien Poupa TP040869 Operating Systems Individual Assignment

5

2. Installation and configuration

a. Installation of the Operating System chosen

In this tutorial, we will install Debian 8.4.0 using an ISO image. Other means of installation

are available, such as live CDs, USB keys or minimal CDs when having an internet connection.

One need to ensure that the CPU architecture on the computer where Debian will be installed

matches the architecture of the ISO file. AMD64 should be good enough for modern computers.

First, download the ISO image from the following URL:

http://caesar.acc.umu.se/debian-cd/8.4.0/amd64/iso-cd/debian-8.4.0-amd64-CD-1.iso

Then we boot into the CD where the ISO has been burnt:

We select “Graphical install” in order to have a GUI interface during the installation process.

http://caesar.acc.umu.se/debian-cd/8.4.0/amd64/iso-cd/debian-8.4.0-amd64-CD-1.iso

Adrien Poupa TP040869 Operating Systems Individual Assignment

6

Then, select the language to be installed.

Then, select the location of the computer for the clock.

Adrien Poupa TP040869 Operating Systems Individual Assignment

7

Select the keyboard mapping to use:

Adrien Poupa TP040869 Operating Systems Individual Assignment

8

Enter the hostname. You can leave “debian” as default.

Enter your domain name – you can leave empty.

Adrien Poupa TP040869 Operating Systems Individual Assignment

9

Enter the root password twice, very important to administrate the computer.

Enter your username. You can create other accounts once the installation is finished:

Adrien Poupa TP040869 Operating Systems Individual Assignment

10

Enter your username once again.

Enter the password for the user you just created.

Adrien Poupa TP040869 Operating Systems Individual Assignment

11

Now select the partitioning you want. The simplest is to install the system on the entire disk.

Adrien Poupa TP040869 Operating Systems Individual Assignment

12

Select the disk you want to use.

Choose if you want to use multiple partitions. The simplest is to put all the files in one single

partition.

Adrien Poupa TP040869 Operating Systems Individual Assignment

13

Select “Finish portioning…” and hit “Continue”.

Select “Yes” to write the changes to disks.

Adrien Poupa TP040869 Operating Systems Individual Assignment

14

Select “No” as we do not have more CDs to install.

Adrien Poupa TP040869 Operating Systems Individual Assignment

15

Select “yes” to use a network mirror to install additional packages such as the GUI Gnome.

Select your country in order to have the select the best mirror.

Adrien Poupa TP040869 Operating Systems Individual Assignment

16

Select the appropriate mirror.

Leave blank if you do not use a proxy.

Adrien Poupa TP040869 Operating Systems Individual Assignment

17

Adrien Poupa TP040869 Operating Systems Individual Assignment

18

Select “Yes” or “No” depending if you want to be part of the popularity contest.

Check the “GNOME” box to install GNOME GUI. Otherwise, Debian will be command-line

based.

Adrien Poupa TP040869 Operating Systems Individual Assignment

19

Select “Yes” to install the GRUB bootloader.

Adrien Poupa TP040869 Operating Systems Individual Assignment

20

Select the device where the GRUB should be installed.

Adrien Poupa TP040869 Operating Systems Individual Assignment

21

The installation is finished. Remove the CD-Rom and Debian will boot.

Select Debian from the GRUB menu.

Adrien Poupa TP040869 Operating Systems Individual Assignment

22

Debian is launched.

Adrien Poupa TP040869 Operating Systems Individual Assignment

23

GNOME desktop:

GNOME offers a feature (“System Monitor”) to view running processes:

Adrien Poupa TP040869 Operating Systems Individual Assignment

24

b. System Configuration Details

Debian requires very low resources in order to work properly.

If one needs an interface (GUI) such as GNOME or KDE, a minimal amount of 128

megabytes of RAM are required (512 are recommended), as well as 5 gigabytes of hard drive

space.

If one does not need an elaborated desktop, the resources needed are less important: only

64 megabytes of RAM are required (256 are recommended) and 1 gigabyte of hard drive space.

However, the actual minimum memory requirements are less than the numbers listed

above. On some architectures, it is possible to install Debian with as low as 20 megabytes.

For desktop usage, a Pentium 4 1Ghz is recommended.

Adrien Poupa TP040869 Operating Systems Individual Assignment

25

c. Process Control Management – CPU scheduling algorithms

LO – CPU Scheduling algorithms: program which controls / manages all processes.

Each OS uses one CPU scheduling algorithm.

i. First-come, first-served

The FCFS is one of the CPU scheduling algorithms. This algorithm executes the processes in

sequential orders. This algorithm is not efficient, because it produces high rate of average waiting time. In

this algorithm, the process in two front positions in the ready queue is executed first while two process in

the last position in the ready queue is invited for execution at the end.

Process CPU burst time in ms Waiting time for process Turnaround time

P1 10 0 10

P2 1 10 11 (10 + 1)

P3 2 11 13 (11 + 2)

P4 1 13 14 (13 + 1)

P5 5 14 19 (14 + 5)

Average waiting time for the processes P1, P2, P3, P4, P5 = 0+10+11+13+14 = 48/5 = 9.6 ms

Turnaround time = waiting time + CPU burst time

Average turnaround time for the processes P1, P2, P3, P4, P5 = 10+11+13+14+19 = 67/5 = 13.4 ms

P1 P2 P3 P4 P5

0 10 11 13 14 19

Front Last, ready queue

Adrien Poupa TP040869 Operating Systems Individual Assignment

26

ii. Priority

Process CPU Burst time in ms Priority Waiting time Turnaround time

P1 10 0 0 10

P2 4 4095 33 37

P3 9 95 24 33

P4 1 40 23 24

P5 13 1 10 23

Average waiting time for the processes P1, P2, P3, P4, P5 = 0+33+24+23+10 = 90/5 = 18 ms

Average turnaround time for the processes P1, P2, P3, P4, P5 = 10+37+33+24+23 = 127/5 = 25.4 ms

Note: low number represent high-priority

P1 P5 P4 P3 P2

0 10 23 24 33 37

High priority Low priority

Priority CPU scheduling algorithm: one of the CPU scheduling algorithm. In this algorithm, each

process enters into the ready queue an integer number called “priority number”. In some situations, low

priority number (0) will be given “high respect” while in some situations the high priority number will be

given “high respect”.

The high priority process will be executed first while the low priority process will be executed at the end.

Weakness: this algorithm caver a problem called “starvation”. Low priority process may not be

getting a chance to enter into the CPU. The low priority process may be ignored by the CPU. This problem

is called “saturation”.

Solution to solve the starvation: aging technique – it is a simple technique, which either increments

or decrements the priority number of the low priority process by 1.

For example:

97 98

96 97

95 95

It is a preemptive scheduling algorithm.

FCFS is not a preemptive algorithm.

Adrien Poupa TP040869 Operating Systems Individual Assignment

27

iii. Round robin

Time slice = 2ms.

Process CPU Burst time in ms Waiting time (ms) Turnaround time

(ms)

P1 10 = 8 = 6 = 4 = 2 = 0 21 (0+7+6+4+4) 31

P2 4 = 2 = 0 9 (2+7) 13

P3 9 = 7 = 5 = 3 = 1 = 0 23 (4+7+4+4+4) 32

P4 1 = 0 6 7

P5 13 = 11 = 9 = 7 = 5 = 3 = 1 = 0 24 (7+6+4+4+3) 37

Average waiting time: 24ms

8 2 7 0 11 6 0 5 9 4 3 7 2 1 5 0 0 3 1 0

P1 P2 P3 P4 P5 P1 P2 P3 P5 P1 P3 P5 P1 P3 P5 P1 P3 P5 P5 P5

0 2 4 6 7 9 11 13 15 17 19 21 23 25 27 29 31 32 34 36 37

The round robin is an efficient CPU algorithm. This algorithm does not cause the “starvation”

problem. It is a preemptive CPU scheduling algorithm. This algorithm gives equal respect to each process.

This algorithm handles all processes equally. It produces a small amount of average waiting time. The time-

slice or time quantum concept is used in this algorithm.

Adrien Poupa TP040869 Operating Systems Individual Assignment

28

iv. Shortest job first

Process CPU Burst time in ms Waiting time in ms

P1 10 14

P2 4 1

P3 9 5

P4 1 0

P5 13 24

P4 P2 P3 P1 P5

0 1 5 14 24 37

Low CPU burst time High

Average waiting time: 44/5 = 8.8ms

Average turnaround time: 81/5 = 16.2ms

Every CPU scheduling algorithm has its own weakness and strengths. The shortest job first is one

of the simplest CPU scheduling algorithms. In this algorithm, the CPU first executes the process which

requires a least CPU’s valuable (burst) time. The CPU executes the process which requires a huge amount

of time at the end. This algorithm also causes “starvation” among the processes which require a huge

amount of CPU time (CPU burst time).

The process, which require a huge CPU’s time, may be ignored or may not be getting a change to

enter into the CPU.

Solution to resolve the starvation problem: aging technique.

Adrien Poupa TP040869 Operating Systems Individual Assignment

29

v. Completely Fair Scheduler

Debian does not use any of the algorithms explained above. Instead, it uses the Completely Fair

Scheduler (CFS). It aims to maximize overall CPU utilization while also maximizing interactive

performance. It is an improvement of Fair-share scheduling which strategy is to strategy is to recursively

apply the round-robin scheduling algorithm at each level of abstraction (processes, users, groups, etc.).

To sum up, it is similar to the round-robin algorithm as it tries to give each processes equal chances

to complete.

Adrien Poupa TP040869 Operating Systems Individual Assignment

30

OS area

0kb

640kb

P1 1500kb

640kb

2140kb

Free hole area 260kb

2140kb

2400kb

OS area

0kb

640kb

P1 1500kb

640kb

2140kb

P2 100kb

2140kb

2240kb

Free hole area 160kb

2240kb

2400kb

OS area

0kb

640kb

P1 1500kb

640kb

2140kb

P2 100kb

2140kb

2240kb

P3 100kb

2240kb

2340kb

P4 23kb

2340kb

2363kb

Free hole area 37kb

2363kb

2400kb

OS area

0kb

640kb

Free hole area 1: 1500kb

640kb

2140kb

P2 100kb

2140kb

2240kb

P3 100kb

2240kb

2340kb

P4 23kb

2340kb

2363kb

Free hole area 2: 37kb

2363kb

2400kb

Swap out P1 to accomodate P5

3. Memory Management – Memory allocation algorithms

a. Introduction to the Memory management

Having the following processes in the waiting list, let’s see how they fill RAM.

Process ID Size of process in kb

P1 1500

P2 100

P3 100

P4 23

P5 1400

P6 99

OS area

0kb

640kb

Free hole area 1760kb

640kb

2400kb

OS area

0kb

640kb

P1 1500kb

640kb

2140kb

P2 100kb

2140kb

2240kb

P3 100kb

2240kb

2340kb

Free hole area 60kb

2340kb

2400kb

Adrien Poupa TP040869 Operating Systems Individual Assignment

31

OS area

0kb

640kb

P5 1400kb

640kb

2040kb

Free hole area 1: 100kb

2040kb

2140kb

P2 100kb

2140kb

2240kb

P3 100kb

2240kb

2340kb

P4 23kb

2340kb

2363kb

Free hole area 2: 37kb

2363kb

2400kb

Swap-in P5 to the first hole area

Swap in: moving process from backing store (BS = HD) to RAM

Swap out: transferring unwanted process from the RAM to BS

Swapper: it is the process created at system startup time, which is also the first process created by the

system. It is referred as the ‘idle task’ and ensures that at least one process is in the process scheduling

queue.

Frame: the user area of the RAM, subdivided into logical equal sized partitions, called “frames”. Each

frame can hold only one age at a time.

Page: each bug process is subdivided into smaller processes called “pages”

Pager: it is a software component. It is a part of an operating system. It handles pages while the swapper

handles processes.

Adrien Poupa TP040869 Operating Systems Individual Assignment

32

b. Internal fragmentation, External Fragmentation and Compaction

techniques

Fixed memory partition/allocation causes a special problem called “internal fragmentation”. It means

that the free hole areas found here and there inside the RAM cannot be merged or cannot be reused

because it has already been inefficiently assigned to a process. In other terms, the free hole areas are not

contiguous.

The dynamic allocation/partition causes a special problem called “external fragmentation”. It happens

in some situations, where the free hole areas found inside RAM cannot be reused even though the sum

of the size of all free hole areas is superior or equal to the size of a needy process.

Source: http://stackoverflow.com/questions/1200694/internal-and-external-fragmentation

This diagram shows the difference between internal fragmentation that happens inside a process and

external fragmentation that happens between processes.

This implies that the free hole areas not found at one location inside the RAM. They are found at various

locations inside the RAM.

Adrien Poupa TP040869 Operating Systems Individual Assignment

33

For example, the sum of the size of the free hole areas 1 and 2 is 38kb. The size of the needy process P7

is 38kb. But the RAM is unable to accommodate the P7 unless the free hole areas are merged together,

which is explained in the following diagrams.

OS area

0kb

640kb

P5 1400kb

640kb

2040kb

Free hole area 1: 1kb

2040kb

2041kb

P2 100kb

2041kb

2141kb

P3 100kb

2141kb

2241kb

P4 23kb

2241kb

2264kb

Free hole area 2: 37kb

2264kb

2301kb

Compaction technique: it merges all the free hole areas together in order to make a big free hole area so

that the big merged area free hole can be reused to accommodate any needy process.

To sum up, what are the differences between external and internal fragmentation?

External fragmentation Internal fragmentation

The dynamic memory allocation partition causes

the external fragmentation

The fixed memory partition allocation causes the

internal fragmentation problem

The fixed hole areas found inside the RAM can

be merged and reused

The free hole areas found inside the RAM cannot

be merged or reused

The compaction technique is applied in order to

merge all free hole areas

The compactor technique cannot be applied here

O S a r e a

0kb

640kb

P5 1400kb

640kb

2040kb

P2 100kb

2040kb

2140kb

P3 100kb

2140kb

2240kb

P4 23kb

2240kb

2263kb

P7 38kb

2263kb

2301kb

37+1 = 38kb free compacted

Adrien Poupa TP040869 Operating Systems Individual Assignment

34

c. Page replacement algorithms

Page replacement algorithms are responsible for the decision to swap out memory pages when a new

page of memory has to be allocated. They decide which memory page should be swapped out.

Each operating systems requires it in order to maintain its stability and avoid having a large number of

page faults, which happen when there is no free page available to satisfy the allocation. It is crucial

because it minimizes total time waiting for memory.

For example, we will compare the two algorithms FIFO and LRU with the same sequence of processes:

0,4,1,4,2,4,3,4,2,4,0,4,1,4,2,4,3,4.

The FIFO (First In, First Out) is one of the simplest replacement algorithms. In this algorithm, the page

who first entered into the RAM, is chosen for page-out. This algorithm causes a high rate of page faults.

The entire frames are searched for in order to find a page, to be page-out.

0 4 1 4 2 4 3 4 2 4 0 4

0 0 0 0 2 2 2 2 2 2 0 0

 4 4 4 4 4 3 3 3 3 3 3

 1 1 1 1 1 4 4 4 4 4

PF=1 PF=2 PF=3 NoPF PF=4 No PF PF=5 PF=6 No PF No PF PF=7 No PF

1 4 2 4 3 4

0 0 0 4 4 4

1 1 1 1 3 3

4 4 2 2 2 2

PF=8 No PF PF=9 PF=10 PF=11 No PF

Number of page fault that would occur/happen = 11

LRU (Least Recently Used) is one of the efficient page replacement algorithms. This provides better

performance. For this algorithm causes a minimum number of page fault events. This algorithm always

looks for the page which has not been referred (or used) for a longest period of time, in order to page-

out.

0 4 1 4 2 4 3 4 2 4 0 4

0 0 0 0 2 2 2 2 2 2 2 2

 4 4 4 4 4 4 4 4 4 4 4

 1 1 1 1 3 3 3 3 0 0

PF=1 PF=2 PF=3 NoPF PF=4 No PF PF=5 NoPF No PF No PF PF=6 No PF

1 4 2 4 3 4

1 1 1 1 3 3

4 4 4 4 4 4

0 0 2 2 1 1

PF=7 No PF PF=8 No PF PF=9 No PF

Number of page fault that would occur/happen = 9

Debian has a Linux kernel which claims to use a “Page Frame Reclaiming Algorithm”, which is

basically a Least Recently Used algorithm.

Adrien Poupa TP040869 Operating Systems Individual Assignment

35

d. Memory allocation strategies

Below are the 3 memory allocation strategies:

- First-fit: it starts searching operation from the first free hole area in RAM. The searching

operation stops at the moment it finds the first free hole which can accommodate a needy process

- Best-fit: it starts its searching operation from the first free hole area. The entire free holes are

searched in order to find the smallest free hole area which can accommodate a needy process.

It is efficient because it causes less memory wastage.

- Worst-fit: it starts its searching operation from the first free hole area in RAM. The entire free

hole areas are searched in order to find the biggest free hole area which can accommodate a

needy process. It stops its searching operation at the moment it finds the biggest free hole area

to accommodate the needy process. No OS uses this strategy for it is a greedy strategy and it

causes a huge memory wastage each time.

For example, if we have the following situation and we want to allocate 12kb, let’s see how the

algorithms would behave:

OS area

Free hole area 1: 6kb

Allocated memory

Free hole area 2: 14kb

Allocated memory

Allocated memory

Free hole area 3: 19kb

Allocated memory

Free hole area 4: 11kb

Allocated memory

Free hole area 5: 13kb

O S a r e a

Free hole area 1: 6kb

Allocated memory

Free hole area 2: 14kb

Allocated memory

Allocated memory

Free hole area 3: 19kb

Allocated memory

Free hole area 4: 11kb

Allocated memory

New allocated memory: 12kb

Free hole area 5: 1kb

Best fit

OS area

Free hole area 1: 6kb

Allocated memory

Free hole area 2: 14kb

Allocated memory

Allocated memory

New allocated memory: 12kb

Free hole area 3: 7kb

Allocated memory

Free hole area 4: 11kb

Allocated memory

Free hole area 5: 13kb

Worst fit

Adrien Poupa TP040869 Operating Systems Individual Assignment

36

O S a r e a

Free hole area 1: 6kb

Allocated memory

New allocated memory: 12kb

Free hole area 2: 2kb

Allocated memory

Allocated memory

Free hole area 3: 19kb

Allocated memory

Free hole area 4: 11kb

Allocated memory

Free hole area 5: 13kb

First fit

Belady, an OS expert, found that the number of page-fault events reduced when the number

of frames increased. But the OS expert failed to demo that this happens in all page-replacement

algorithms.

Debian uses an optimistic memory allocation strategy, meaning that even though the

system returns a non-null object when using the instruction malloc, there is no guarantee that the

memory is actually available. It means that the memory allocation procedure will always succeed.

However, memory is not actually committed to the requesting process until it is really used

by the process. If the memory is already full, one or more processes will be killed.

Adrien Poupa TP040869 Operating Systems Individual Assignment

37

C
y
li

n
d

er
 0

53

98

183

37
122

14
124

65
67

4. Secondary-Storage Management – Disk Scheduling algorithms

The queue is: 53, 98, 183, 37, 122, 14, 124, 65, 67.

The head is initially at 53, the head is at 0 and the tail at 199.

a. First-come, first-served

0 1 2 199

Disk movements:

53~98=45

98~183=85

183~37=146

37~122=85

122~14=108

14~124=110

124~65=59

65~67=2

 640 cylinders (total number of disk movements occurred)

 7 swings

Adrien Poupa TP040869 Operating Systems Individual Assignment

38

C
y
li

n
d

er
 0

53

65

67

37
14

183

122

22
124

22

98

First-come, first-served is one of the simplest disk scheduling algorithms. All read/write

requests are served by the read/write head. No request is suffering from the “starvation” problem.

The read/write head gives service to each request in sequential order. This algorithm causes a high

rate of swings.

b. Shortest Seek Time First

0 1 2 199

Disk movements:

53~65=12

65~67=2

67~37=30

37~14=23

14~98~84

98~122=24

122~124=2

124~183=59

 238 cylinders

Shortest Seek Time First provides better performance than FCFS. The read/write head moves

to the request, which is the nearest to its current position. The read/write head gives service to all

the request found in the queue. It causes a low number of swings.

Adrien Poupa TP040869 Operating Systems Individual Assignment

39

C
y
li

n
d

er
 0

53

65

67

98

122

124

183

14

37

No service

c. C-Scan

0 1 2 199

Disk movements:

53~65=12

65~67=2

67~98=31

98~122=24

122~124=2

124~183=59

183~199=16

0~14=14

14~37=23

 183 cylinders

C-Scan disk scheduling algorithm is one of the efficient disk scheduling algorithms. It provides

better performance than the FCFS and the SSTF disk scheduling algorithm. It treats the HD as a

circular disk. The read/write head always travels from one end (0th cylinder) to other end (the last

cylinder). The algorithm is really an efficient algorithm because it causes a low number cylinder

movements and low number of swings. The read/write head gives service to the requests found on

its way to the 199th cylinder. Whilst, the read write does not give service to the requests found on

its way to 0th cylinder.

Adrien Poupa TP040869 Operating Systems Individual Assignment

40

C
y
li

n
d

er
 0

53

65

67

37

14

183

122

22
124

22

98

d. Scan

0 1 2 199

Disk movements:

53~37=16

37~14=23

14~0=14

0~65=65

65~67=2

67~98=31

98~122=24

122~124=2

124~183=59

 236 cylinders

This disk scheduling algorithm provides better performances than the FCFS and SSTF.

Nevertheless, it is not an efficient disk scheduler algorithm. It behaves like an elevator. The

read/write head travels from one of the disk (0th cylinder) to other end of the disk (last cylinder).

The read/write head gives service to the requests found on its way to the 0th cylinder to the last

cylinder. When the read/write head travels towards the 0th cylinder, it travels up to the 0th cylinder.

When the read/write head travels towards the last cylinder (end of disk) it travels up to the last

cylinder.

Adrien Poupa TP040869 Operating Systems Individual Assignment

41

C
y
li

n
d

er
 0

53

65

67

98

122

124

183

14

37

e. C-Look

0 1 2 199

Disk movements:

53~65=12

65~67=2

67~98=31

98~122=24

122~124=2

124~183=59

14~37=23

 153 cylinders

It is one of the efficient disk scheduling algorithm. It provides the best performance among the

disk scheduling algorithms (FCFS, SSTF, C-scan, Scan) like (C-scan, Scan) the write/write head

travels from one end of the disk to other end of the disk. But, when the read/write head travels

towards the last cylinder (end of disk), it gives service to the last request found on its way. The

read/write head does not travel up to the last cylinder (199th). It stops at the last request on its way

to the end of disk, changes its direction and travels towards the beginning of the disk.

Adrien Poupa TP040869 Operating Systems Individual Assignment

42

f. Linux Disk Scheduling algorithms

Since Debian uses a Linux kernel, it offers three different disk scheduling algorithms.

- Noop, which is a simple disk scheduling algorithm, using the first in, first out principle to

insert all requests in a queue. It implements requests merging.

- Deadline scheduler, which guarantees (or at least tries to) a start time for each request

- Completely fair queuing is the default disk scheduling algorithm. It tries to provide a fair

share of disk service for each process.

The Anticipatory scheduling algorithm has been removed from Linux kernel since version

2.6.33.

The cfq is the default disk scheduling algorithm on a fresh Debian installation

Adrien Poupa TP040869 Operating Systems Individual Assignment

43

R1

R2

Deadlock

cycle

P1, P2… are running programs

R1, R2… are resources like CD drive, printer, fax…

For example, the process P1 needs the resource P1, which

P2 currently uses it while the process P2 needs the

resource R2 which the process P1 currently uses.

Both processes will enter into a long-waiting state that

causes a deadlock.

5. Deadlock and help

a. Deadlock Management

i. Deadlock cycle

A deadlock is an unexpected situation that occurs in multi user networking environment.

R1, R2 are resources (printer, CD driver…)

A deadlock situation may happen if the following conditions are met simultaneously:

- Circular wait

- Hold and wait

- No preemption

- Mutual exclusion

They are known as the “Coffman condition” and are described below.

No OS is good at handling deadlocks.

ii. Circular wait

This circular wait state may occur, when there are n numbers of processes and m number

of resources in a multi user networking environment. The diagram shows that the process P1 badly

in need of the resources R1 being by the process P2. The process P2 badly in need of the resources

R2, which is currently being the process P3. The process Pn badly in need of the resources Rn

which is currently being used by the process P1.

If this long-waiting state continues, thee waiting process will cause a “circular deadlock”.

P1 P2

P1 P2 R1

waiting

waiting

R2

Adrien Poupa TP040869 Operating Systems Individual Assignment

44

iii. Hold and wait

This situation may occur when a process waits to get additional resources which is currently

being held by another process. The diagram shows that the process P1 is currently holding 2

resources (printer and file). Instead of using two resources, the process is waiting to get an

additional resource, fax machine, which is currently being held by the process P2.

iv. No preemption

This situation/state may occur when the following situation takes place. For example, the

process P1 got a privilege to hold the resources CPU for a period of time. No other processes

including the CPU can force the process P1 to exit before the allocated time is expired.

The CPU scheduling algorithm FIFO behaves like this strategy.

R1

P1

R2

P1 is holding R1

P1 is waiting for R2

R2 R1

P1

P2

Adrien Poupa TP040869 Operating Systems Individual Assignment

45

v. Mutual exclusion

Two nodes are removed simultaneously (i and i+1)

In the end, only the node i is really removed

Source: Wikipedia, see the References section below

This situation may occur when a valuable resource is shared by more than one process.

For example, the printer is currently being used by the process P1. The process P1 uses the

printers on “Mutual exclusion” mode. It means no other processes can use this printer until the

printer is released by the process P1.

vi. Deadlocks in Linux

As all the other operating systems, Linux kernel is not good at handling deadlocks.

However, if there is no deadlock prevention for user applications or threads, it does take care about

its own deadlocks.

For developers, “lockdep” is a tool allowing deadlock prevention.

Adrien Poupa TP040869 Operating Systems Individual Assignment

46

b. Help and Support

GNOME offers a “Help” feature accessible through the desktop:

Adrien Poupa TP040869 Operating Systems Individual Assignment

47

6. Conclusion

Debian is a free Linux-based operating system, free and open-source. It is very popular for its

stability and its ungreediness. It is easy to install thanks to his GUI installer and his GUI desktop,

GNOME.

Every operating system having a CPU scheduling algorithm, Debian uses the completely fair

scheduler. It is very efficient, despite having its own weakness and strengths like every CPU

scheduling algorithm. It does not cause the “starvation” problem and is a preemptive CPU

scheduling algorithm.

Debian uses the compaction technique to avoid having free RAM memory being wasted. To

handle page replacement, a “Page Frame Reclaiming Algorithm” is used, which is basically a Least

Recently Used algorithm.

Debian uses an optimistic memory allocation strategy, it means that the memory allocation

procedure will always succeed. However, if the memory is already full, one or more processes will

be killed.

The Linux kernel Debian relies on offers three different disk scheduling algorithms. The

completely fair scheduling is the algorithm used by default; it tries to provide a fair share of disk

service for each process.

No Operating System is good at handling deadlocks, which are caused by four simultaneous

conditions: circular wait, hold and wait, no preemption and mutual exclusion. Nevertheless, if it

does not provide support for user’s processes, Linux’s kernel takes care of its own deadlocks.

Finally, the GNOME desktop offers a GUI interface where a help interface as well as a process

manager are available. If need be, the terminal is available.

Adrien Poupa TP040869 Operating Systems Individual Assignment

48

7. References

3.4. Meeting Minimum Hardware Requirements. 2016. 3.4. Meeting Minimum Hardware Requirements.

[ONLINE] Available at: https://www.debian.org/releases/wheezy/amd64/ch03s04.html.en. [Accessed 30

May 2016].

Wikipedia. 2016. Completely Fair Scheduler - Wikipedia, the free encyclopedia. [ONLINE] Available at:

https://en.wikipedia.org/wiki/Completely_Fair_Scheduler. [Accessed 30 May 2016].

malloc(3) - Linux manual page. 2016. malloc(3) - Linux manual page. [ONLINE] Available at:

http://man7.org/linux/man-pages/man3/malloc.3.html. [Accessed 30 May 2016].

c++ - Linux optimistic malloc: will new always throw when out of memory? - Stack Overflow.

2016. c++ - Linux optimistic malloc: will new always throw when out of memory? - Stack

Overflow. [ONLINE] Available at: http://stackoverflow.com/questions/1655650/linux-optimistic-

malloc-will-new-always-throw-when-out-of-memory. [Accessed 30 May 2016].

Wikipedia. 2016. CFQ - Wikipedia, the free encyclopedia. [ONLINE] Available at:

https://en.wikipedia.org/wiki/CFQ. [Accessed 30 May 2016].

Linux Change The I/O Scheduler For A Hard Disk. 2016. Linux Change The I/O Scheduler For A

Hard Disk. [ONLINE] Available at: http://www.cyberciti.biz/faq/linux-change-io-scheduler-for-

harddisk/. [Accessed 30 May 2016].

Wikipedia. 2016. Mutual exclusion - Wikipedia, the free encyclopedia. [ONLINE] Available at:

https://en.wikipedia.org/wiki/Mutual_exclusion. [Accessed 30 May 2016].

Columbia University. 2010. Deadlock Avoidance. [ONLINE] Available at:

https://www.cs.columbia.edu/~smb/classes/s06-4118/l10.pdf. [Accessed 30 May 2016].

concurrency - how does the linux kernel avoid deadlocks? - Stack Overflow. 2016. concurrency -

how does the linux kernel avoid deadlocks? - Stack Overflow. [ONLINE] Available at:

http://stackoverflow.com/questions/22170943/how-does-the-linux-kernel-avoid-deadlocks.

[Accessed 30 May 2016].

https://www.debian.org/releases/wheezy/amd64/ch03s04.html.en
https://en.wikipedia.org/wiki/Completely_Fair_Scheduler
http://man7.org/linux/man-pages/man3/malloc.3.html
http://stackoverflow.com/questions/1655650/linux-optimistic-malloc-will-new-always-throw-when-out-of-memory
http://stackoverflow.com/questions/1655650/linux-optimistic-malloc-will-new-always-throw-when-out-of-memory
https://en.wikipedia.org/wiki/CFQ
http://www.cyberciti.biz/faq/linux-change-io-scheduler-for-harddisk/
http://www.cyberciti.biz/faq/linux-change-io-scheduler-for-harddisk/
https://en.wikipedia.org/wiki/Mutual_exclusion
https://www.cs.columbia.edu/~smb/classes/s06-4118/l10.pdf
http://stackoverflow.com/questions/22170943/how-does-the-linux-kernel-avoid-deadlocks

Adrien Poupa TP040869 Operating Systems Individual Assignment

49

No

Student Name

R
es

ea
rc

h
 a

n
d

In
v

es
ti

g
at

io
n

 (
3

0
)

In
st

al
la

ti
o
n

 P
ro

ce
ss

 (
2

0
)

D
o

cu
m

en
ta

ti
o

n
 (

1
0

)

R
ef

er
en

ci
n

g
 (

1
0

)

A
n

al
y

si
s

(1
5

)

P
re

se
n

ta
ti

o
n

 (
1

5
)

T
o

ta
l

(1
0
0

)

1

